Skip to content

%% derivative %%

Quotient Rule

Tags
Calculus
Cegep/1
Word count
214 words
Reading time
2 minutes

Let f and g be two differentiable functions, then

ddxf(x)g(x)=g(x)f(x)f(x)g(x)(g(x))2, provided g(x)0

Proof

Let q(x)=f(x)g(x), then note that

q(x+h)q(x)=f(x+h)g(x+h)f(x)g(x)=f(x+h)g(x)f(x)g(x+h)g(x+h)g(x)q(x+h)q(x)h=1hf(x+h)g(x)f(x)g(x+h)g(x+h)g(x)

Now,

ddxf(x)g(x)=q(x)=limh0q(x+h)q(x)h=limh01hf(x+h)g(x)f(x)g(x+h)g(x+h)g(x)=limh01hf(x+h)g(x)f(x)g(x)+f(x)g(x)f(x)g(x+h)g(x+h)g(x)=limh01g(x+h)g(x)f(x+h)g(x)f(x)g(x)+f(x)g(x)f(x)g(x+h)h=limh01g(x+h)g(x)(f(x+h)g(x)f(x)g(x)h+f(x)g(x)f(x)g(x+h)h)=limh01g(x+h)g(x)(g(x)f(x+h)f(x)hf(x)g(x+h)g(x)h)=1g(x)limh0g(x+h)(g(x)limh0f(x+h)f(x)hf(x)limh0g(x+h)g(x)h)=1g(x)g(x)(g(x)f(x)f(x)g(x))=g(x)f(x)f(x)g(x)(g(x))2

Contributors

Changelog